
Research Institute for Advanced Computer Science
NASA Ames Research Center

Mutual Exclusion

Peter J. Denning

21 Mar91

RIACS Technical Report TR-91.13

NASA Cooperative Agreement Number NCC 2-387

(NASA-CR-18Bk2Z) MUTUAL FXCLUSICN

(Research Inst for Advanced Computer• CSCL
Sci_,nce) i_ D

09B

G3/_l

N91-32822

Unclds

0043092

Mutual Exclusion

Peter J. Denning

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report TR-91.13
21 Mar 91

Almost all computers today operate as part of a network, where they assist people in coordinating
actions. Sometimes what appears to be a single computer is actually a network of cooperating
computers; for example, some supercomputers consist of many processors operating in parallel and
exchanging synchronization signals. One of the most fundamental requirements in aU these systems
is that certain operations be indivisible: the steps of one must not be interleaved with the steps of
another. Two approaches have been designed to implement this requirement, one based on central
locks and the other on distributed ordered tickets. Practicing scientists and engineers need to come
to become familiar with these methods.

This is a preprint of the column The Science of Computing for
American Scientist 79, No. 2 (March-April 1991).

Work reported herein was supported in part by Cooperative Agreement NCC 2-387
between the National Aeronautics and Space Administration (NASA)

and the Universities Space Research Association (USRA).

Mutual Exclusion

Peter J. Denning

Research Institute for Advanced Computer Science

21 Mar 91

Almost all computers today operate as part of a network. They assist people in

coordinating actions, such as sending or receiving electronic mall, depositing or

withdrawing funds from bank accounts, and making or cancelling reservations.

Sometimes what appears to be a single computer is actually a network of cooperating

computers. For example, certain supercomputers consist of many processors operating in

parallel; each of the component processors starts and stops various tasks in accordance

with signals it exchanges with other processors.

One of the most fundamental requirements in all of these systems is that certain

operations be indivisible: the operations must be carried out in some definite order, one at

a time, even when different computers request them simultaneously. If, contrary to this

requirement, the instructions of one operation were interleaved with those of another, the

results would be unpredictable. Deposits and withdrawals could be lost; confirmed

reservations might disappear; parallel-processing computers could produce invalid

outputs.

2/Mutual Exclusion TR-91.13 (21 Mar 91)

Because indivisible operations are not allowed to be in progress simultaneously, we

say that they are mutually exclusive. Until recently, methods for guaranteeing mutual

exclusion have been little known outside the community of computer scientists working

on operating systems and networks. But now shared databases and parallel

supercomputers make it necessary for practicing scientists and engineers to come to grips

with mutual exclusion. This essay is devoted to the subject.

The earliest formulation of the problem of mutual exclusion is credited to Edsger

W. Dijkstra, then at the Technological University of Eindhoven in the Netherlands (1).

He considered a model of a typical configuration of a multicomputer: processors

numbered 1 through N have access via a network to a shared resource R that they read

and update (Figure I). The shared resource might be the accounting records of a bank or

the reservation records of a hotel or airline. The individual computers run programs that

read and alter the shared resource--for example, programs that make deposits and

withdrawals from bank accounts or programs that make and cancel reservations. If these

programs can run simultaneously, they can leave the shared resource in an invalid state,

causing considerable damage or inconvenience to individuals and organizations. Dijkstra

proposed that the procedures that manipulate the shared resource be organized as a set of

indivisible operations. He used the term mutual exclusion to refer to the property that the

steps of one operation cannot be interleaved with the steps of another. He referred to any

sequence of instructions that must not be interleaved with other sequences of instructions

as a critical section.

Dijkstra specified that a valid solution to this problem must satisfy three properties.

First, it must be symmetric: The same protocol must work on any processor. Second, no

TR-91.13(21Mar91) Mutual Exclusion/3

assumptions can be made about the relative speeds of the processors; they can speed up,

slow down, and overtake one another in unpredictable ways. Third, the failure of any

processor outside a critical section must not affect the future operation of the other

processors.

Noting that the processors must exchange signals that allow them to determine

which one may next enter its critical section, Dijkstra proposed to store the variables

used for these signals in a memory unit accessible to all processors. The operations of

reading and writing memory locations in this common store must themselves be

indivisible--that is, when two or more computers try to communicate simultaneously with

the same common location, these communications will take place one after the other,

although in an unknown sequence. This assumption about memory reads and writes is

satisfied by common memory architectures (Figure 2).

The essence of Dijkstra's solution is to attach a standard prologue and epilogue to

the code of a critical section (Figure 3). The prologue protocol seeks permission for

access to the shared resource and obtains it after a delay of unknown duration; the

epilogue signals the other waiting computers that the shared resource is now free. A

simple example exists for computers that recognize a test-and-reset instruction: TR (a)

returns the contents of memory location a and replaces those contents with 0, all in one

indivisible operation. The binary variable k, initially 1, is used to indicate when the

resource is free (k =1) or in use (k =0). The solution is:

L" if TR (k)=O then goto L

indivisible operation on resource R
k=l

4/Mama/Exclusion TR-91.13 (21 Mar 91)

The computer will loop at statement L as long as k =0; as soon as the resource is

released, k becomes 1 and the next computer that tries statement L will pass, leaving

k =0. Mutual exclusion of memory operations guarantees that no more than one

processor can pass statement L after k becomes 1.

This solution is easy to understand but has four drawbacks. First, waiting

processors loop at statement L ; not only are those processors unavailable for other useful

work in the interim, but their recurring contention for access to the shared memory area

slows down the other computers. This situation is called busy waiting. Second, a failure

of the memory holding k will halt the system. Third, there is no guarantee that the

computer that has been waiting the longest time will be next to use the resource; any

waiting computer can go next. Fourth, this solution is not available on a system that has

no test-and-reset instruction. How can these drawbacks be eliminated?

Dijkstra's algorithm (Figure 4) overcomes the fourth drawback by relying only on

normal read and write operations. It is a difficult program to understand because one

must visualize multiple processors proceeding simultaneously through the code at

different speeds and in different orders.

Donald Knuth of Stanford University provided an even more complicated program

that overcomes the third drawback (2,3). It ensures that all processors take turns in

executing their critical sections.

Overcoming the second drawback requires a different strategy that avoids storing a

lock in a single, common location. Leslie Larnport of the Digital Equipment Corporation

proposed a strategy he called the "Baker's algorithm" because it was modeled on the

method of serving customers in the order of numbers they draw from a ticket machine on

TR-91.13(21Mar91) MutualExclusion/5

enteringa bakery (4). Lamport did not want to posit an electronic ticket dispenser

because the failure of such a device would halt the system. Instead, he proposed that

each processor compute its own ticket number as one larger than the maximum of all the

numbers it sees held by the other processors. His protocol needs some additional checks

in it to deal with the case where two computers compute the same ticket number

simultaneously (Figure 5).

Even though ticket dispensers may be no less fault-tolerant than locks stored in

shared memory, David Reed and Rajendra Kanodia demonstrated that a system with such

devices can perform many useful synchronization operations, including mutual exclusion

(5). Let the variable k denote the number of completions of a critical section (k =0 when

the system is started). The solution is as simple as the previous one, where ticket is a call

on the function that returns the next ticket from the ticket dispenser:

L"

t=ticket

if t > k then goto L

indivisible operation on resource R
k=k +l

Like the previous solution, this one also suffers from the problem of busy waiting at

statement L.

Busy waiting is a persistent problem in both the central-lock approach and the ticket

approach: there is a loop in which processors can cycle while waiting their turn for the

shared resource. Busy waiting consumes processor time, which may be a waste if there

is other useful work to do. Busy waiting also slows down the nonwaiting processors

because the repeated tests by the waiting processors consume memory cycles that would

otherwise be available. A high degree of busy waiting, therefore, affects the whole

6/MutualExclusion TR-91.13(21Mar 91)

system. There are two ways to mitigate busy waiting. One is to insert a pause before

looping back; the duration of the pause should be approximately KT/2, where K is the

average number of computers waiting for the shared resource and T is the average

duration of the critical operation. This reduces the frequency of testing to approximately

the frequency of completions of the critical operations.

The other method is to devise a system of queues on each computer that keeps track

of the different computational processes on that computer and allows a process that

encounters a lock to be suspended and the processor reassigned to another process. Such

a method was proposed by Dijkstra in 1968 (6) and has undergone many refinements

since then (7). The essence of Dijkstra's approach is a new programming object called a

semaphore, used for signalling among processes. A semaphore consists of a counter and

a queue of processes awaiting a signal. In addition to the queues associated with

semaphores, the operating system maintains a queue called the ready list of processes

waiting their turn for execution on a processor. Dijkstra proposed two indivisible

operations on semaphores:

wait(s):

count (s) = count (s) - 1
if s < 0 then

add self to queue (s)

switch processor to process at head of ready list
end if

TR-91.13(21 Mar 91) Mutual Exclusion/'/

signai(s):
if s < 0 then

transfer process from head of queue (s)

to tail of ready list
end if

count (s) = count (s) + 1

A process executing a wait operation may encounter an unknown delay, and the

processor will be reassigned to a ready process in the meantime. A process executing a

signal operation always completes that operation immediately and may awaken one of

the other processes waiting in the queue; the latter process will resume and complete its

previously interrupted wait operation.

With a semaphore s whose initial count is 1, the critical section can be implemented

as

wait(s)

indivisible operation on resource R

signai(s)

This semaphore-based solution only avoids busy waiting in an operating system that

multiplexes a set of processors among a set of ready processes--the mode of operation

usually called time-sharing. Even then, some busy waiting may be encountered during

queue manipulation (7). If a computer runs a single dedicated process, there is no way to

avoid busy waiting when it encounters a busy shared resource.

It is also important to note that some form of unknown delay must always exist

when waiting for access to a shared resource when simultaneous requests must be

arbitrated. Even the lowly arbiter within the memory subsystem cannot have a fixed time

limit placed on when it will make its selection among nearly simultaneous requests (8).

8/Mutual Exclusion TR-91.13 (21 Mar 91)

The main conclusion is that we have a variety solutions to the problem of mutual

exclusion in systems of concurrent programs. The solutions are difficult to get right.

Even the most experienced programmers make mistakes with them.

References

1. Edsger Dijkstra. 1965. "Solution of a problem in concurrent programming

control." Communications of ACM 8, 9 (September), 569.

2. Donald Knuth. 1966. "Additional comments on a problem in concurrent

programming control." Communications of ACM 9, 5 (May); 321-322.

3. Edward Coffman and Peter Denning. 1973. Operating Systems Theory. Prentice-

Hall. See Chapter 2.

4. Leslie Lamport. 1974. "A new solution of Dijkstra's concurrent programming

problem." Communications of ACM 17, 8 (August), 453.455.

5. David Reed and Rajendra Kanodia. 1980. "Synchronization with eventcounters

and sequencers." Communications of ACM 22, 2 (February), 115-123.

6. Edsger Dijkstra. 1968. "The structure of THE multiprogramming system."

Communications of ACM 11, 5 (May 1968), 341-346.

7. Peter Denning, T. Don Dennis, and Jeffrey Brumfield. 1981. "Low contention

semaphores and ready lists." Communications of ACM 24, 10 (October), 687-698.

8. Peter Denning. 1985. "The arbitration problem." American Scientist 73, 6

(November-December), 516- 518.

computers

0 • •

interconnect

con_)uters

?

shared resource shared lock memory

Figure I. Mutual exclusion problem arises in any network of computers in which

multiple processors must gain access to a shared resource, such as a database. Here

computers I through N require access to resource R. ff two machines attempted to

use R at the same time, the information in R could be left in an inconsistent state; to

eliminate this possibility, only one computer at a time can be allowed access to R.

Some of the simplest and earliest schemes for ensuring mutual exclusion make use

of "lock variables," k, held in a region of memory available to all the computers.

processor

address

value

L.

other

A

)rocessors

r

W

arbiter

memory

Figure 2. Interface between processors and memory has an important role in
guaranteeing mutual exclusion. The interface shown here has five control lines and
two data paths. The processor can read from the memory, write to it, or perform a
test.and-reset operation, which reads from a location and writes a value of zero into
it in a single, atomic action. For each operation the processor first places the
address of the selected memory location in the address register and then sets the
control line A to one to request access to memory. An arbiter, which resolves
competing requests for access, replies on line B when the processor is granted

access. Now the processor issues a signal on either the r, the w or the I line to select
an operation. In response to an r signal, the value at the addressed location is read

into the value register. A w signal causes the contents of the value register to he
written into the addressed location. Finally the I line calls for a test-and-reset
operation, reading the contents of a location into the value register and resetting the
location to zero. On completion, the processor sets the A line to zero to indicate it is
done.

critical section

prologue
request permission;
wait until granted

indivisible operation
on resource R

epilogue
signal completion

program text

Figure 3. Critical section of a computer program, requiring access to a shared
resource R, must be executed as an indivisible unit, without interruption by other
concurrent programs that also access R. In a standard protocol for ensuring
exclusive access, a prologue does not allow the indivisible operation to begin until
permission is granted; an epilogue signals completion of the operation, so that other
processors can take their turn.

br_l = o i :
L: if k _ i l-

then [-

c[il - l
if b[k] = i then k = i I_

goto L _G

else ['_

c[i] = 0 [o

for j = i step 1 until n do _

if j _ i and c[j] - 0 then goto L _i

end if

epilogue

Figure 4. Edsger W. Dijkstra's algorithm for mutual exclusion employs a central
lock as a kind of turnstyle, allowing just one processor at a time to reach the
resource R. The variable k, stored in a location available to all the processors,
serves as the lock. The variables b [i] and c [i], held in the local memory of

processor i, together convey the status of each process; b [i] is zero when process i
is in its critical section, and c [i] is zero if i has tentative permission to use r_urce

R. In the prologue, process i seeks to set k to i ; if it succeeds, it has obtained
tentative permission. The permission is only tentative because another process may
have seized the chance to set k simultaneously. The statements of the else clause

eliminate this possibility by explicitly checking the c variables of all the other
processes. The prologue algorithm is difficult to understand because it must operate
correctly when many processors execute it at various speeds and in various

sequences.

prologue

LI:

L2: (n[i],i

c[i] = l
n[i] = 1 + max(n[l] n[N]

c[i] = 0

for j = I step 1 until n do

if c[j] _ 0 then goto L1

if n[j] _ 0 and (n[j],j) <

then goto L2

end for

Figure 5. Leslie Lamport's algorithm is modeled on the practice of issuing

sequentially numbered tickets to customers at a bakery. To ask permission,

processor i takes a number that is I larger than the largest of all the numbers

previously taken; it stores the number in variable, [i] in its local memory. The

comparison performed in the statement labeled L 2 forces processor i to wait until

its number is the smallest of those held by all the waiting processors. In case two

processors took a number at the same moment (and therefore calculated the same

value), the indexes i and j are also compared; the processor with the lower index is

allowed to proceed first. Statement L ! prevents a subtle bug: If processor] takes a

number at the same time as processor i but does not store that number in, [j] until

processor i has passed the test in L 2, both processors might be granted access to R.

Statement L 1 delays the test until processor j has stored its ticket number.

